Asymmetric Hydrogenation of Amino Ketones Using Chiral RuCl₂(diphophine)(1,2-diamine) Complexes

Takeshi Ohkuma, Dai Ishii, Hiroshi Takeno, and Ryoji Noyori*

Department of Chemistry and Research Center for Materials Science Nagoya University, Chikusa, Nagoya 464-8602, Japan

Received March 29, 2000

There are ample examples of asymmetric hydrogenation of functionalized ketones catalyzed by chiral phosphine-Ru and -Rh complexes.¹ The high efficiency of this process is considered to arise from a chelate mechanism involving the ligation of a heteroatom to the metallic center that facilitates hydride delivery from the metal to carbonyl carbon in the chiral template. Enantioselective hydrogenation of amino ketones provides a particularly important tool for synthesis of physiologically active chiral compounds. Unfortunately, most reported procedures used relatively high catalyst loading [substrate to catalyst molar ratio (S/C) = 200-1000 for Rh² and 1000 for Ru³] and hydrogen pressures as high as 20-100 (Rh) or 100 atm (Ru). A notable exception is Achiwa's MCCP-Rh catalyst hydrogenating 2-diethylaminoacetophenone with an S/C of 100 000 at 20 atm at 50 °C to give the amino alcohol in 96% ee,4,5 while the reactions of other amino ketones show less satisfactory rates and selectivities.^{2d,6} Thus development of practical asymmetric hydrogenation under a mild hydrogen pressure and with a wide scope is highly desirable. The recently devised chiral RuCl₂(diphophine)(1,2diamine) complexes are marvelously effective in differentiating enantiofaces of unfunctionalized simple ketones,7,8 so that various α -, β -, and γ -amino ketones can be asymmetrically hydrogenated at <8 atm and room temperature with an S/C value of 2000-10000, as described below. The diversity of substrates now relies on the capability of the Ru catalysts to effect hydrogenation without nitrogen/Ru coordination.

When a 1.0 M solution of α -dimethylaminoacetone (**2a**) in 2-propanol containing *trans*-RuCl₂[(*R*)-xylbinap][(*R*)-daipen] [(*R*,*R*)-**1a**]^{7–9} and *t*-C₄H₉OK (ketone:Ru:base molar ratio = 2000:1:16) was stirred under 8 atm of H₂ at 25 °C for 4 h, the amino alcohol

(3) (a) Kitamura, M.; Ohkuma, Ť.; Inoue, S.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Ohta, T.; Takaya, H.; Noyori, R. *J. Am. Chem. Soc.* **1988**, *110*, 629–631. (b) Mashima, K.; Kusano, K.; Sato, N.; Matsumura, Y.; Nozaki, K.; Kumobayashi, H.; Sayo, N.; Hori, Y.; Ishizaki, T.; Akutagawa, S.; Takaya, H. *J. Org. Chem.* **1994**, *59*, 3064–3076.

(4) Takeda, H.; Tachinami, T.; Aburatani, M.; Takahashi, H.; Morimoto, T.; Achiwa, K. *Tetrahedron Lett.* **1989**, *30*, 363–366.

(5) For Rh-catalyzed hydrogenation at atmospheric pressure (S/C = 200), see: Devocelle, M.; Mortreux, A.; Agbossou, F.; Dormoy, J.-R. *Tetrahedron Lett.* **1999**, *40*, 4551–4554.

(6) (a) Sakuraba, S.; Achiwa, K. Synlett **1991**, 689–690. (b) Sakuraba, S.; Nakajima, N.; Achiwa, K. Synlett **1992**, 829–830.

(7) For example: (a) Doucet, H.; Ohkuma, T.; Murata, K.; Yokozawa, T.; Kozawa, M.; Katayama, E.; England, A. F.; Ikariya, T.; Noyori, R. *Angew. Chem., Int. Ed.* **1998**, *37*, 1703–1707. (b) Ohkuma, T.; Koizumi, M.; Doucet, H.; Pham, T.; Kozawa, M.; Murata, K.; Katayama, E.; Yokozawa, T.; Ikariya, T.; Noyori, R. *J. Am. Chem. Soc.* **1998**, *120*, 13529–13530. (c) Ohkuma, T.; Koizumi, M.; Ikehira, H.; Yokozawa, T.; Noyori, R. *Org. Lett.* **2000**, *2*, 659– 662.

(8) Noyori, R.; Ohkuma, T. Pure Appl. Chem. 1999, 71, 1493-1501 and references therein.

(9) XylBINAP = 2,2'-bis(di-3,5-xylylphosphino)-1,1'-binaphthyl.^{3b} DAIPEN = 1,1-di(4-anisyl)-2-isopropyl-1,2-ethylenediamine.

(*S*)-**3a** was produced in a 92% ee and 99% yield. Pure *S* amino alcohol was obtained via its crystalline hydrochloride. The diphosphine/diamine Ru catalyst **1a** is much more reactive than the earlier devised diamine-free BINAP–Ru catalysts that require the assistance of heteroatom/Ru interaction and shows an opposite sense of asymmetric induction.^{3,11} 2-Dimethylaminoacetophenone (**2c**) was hydrogenated with the same Ru catalyst to give (*R*)-**3c** in 93% ee. The α -amino group in ketonic substrates exerts a directive influence but not through the ligation to the Ru center. The relative enantio-directing effect in this hydrogenation appears to decrease in the order C₆H₅ > (CH₃)₂NCH₂ > CH₃. Therefore, in going from acetophenone to the aromatic α -amino ketone **2c** to nonaromatic amino ketone **2a**, the ee value varies from 99%^{7b} to 93% (lower selectivity) and -92% (reversed asymmetric sense),¹⁰ respectively.

(R,R)-1a: Ar = 3,5-(CH₃)₂C₆H₃; R¹ = (CH₃)₂CH; R² = H (R,S)-1b: Ar = 3,5-(CH₃)₂C₆H₃; R¹ = H; R² = (CH₃)₂CH

Table 1 illustrates some examples of asymmetric hydrogenation. In the presence of (R,R)-**1a**, acetophenone derivatives **4a**-**e** possessing an acetamido, benzamido, or alkoxycarbonylamino group at the α position were hydrogenated with a high enantioselectivity, up to 99.8% ee for **5c**. This reaction can be conducted even at 1 atm of H₂. The *tert*-butoxycarbonyl group can be removed from the product under both acidic (HCl in ether) and basic (0.4 M KOH in aqueous C₂H₅OH, 80 °C) conditions. The *N*-methoxycarbonyl analogue **4d** gave the cyclization product (*R*)-**6**¹² in 99% ee, which is easily hydrolyzed to (*R*)-2-methylamino-1-phenylethanol (KOH in aqueous C₂H₅OH, 80 °C). This direction of

Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New York, 1994; Chapter 2.
 (2) (a) Hayashi, T.; Katsumura, A.; Konishi, M.; Kumada, M. Tetrahedron

^{(2) (}a) Hayashi, T.; Katsumura, A.; Konishi, M.; Kumada, M. Tetrahedron Lett. 1979, 425-428. (b) Törös, S.; Kollár, L.; Heil, B.; Markó, L. J. Organomet. Chem. 1982, 232, C17-C18. (c) Yoshikawa, K.; Yamamoto, N.; Murata, M.; Awano, K.; Morimoto, T.; Achiwa, K. Tetrahedron: Asymmetry 1992, 3, 13-16. (d) Devocelle, M.; Agbossou, F.; Mortreux, A. Synlett 1997, 1306-1308. (e) Pasquier, C.; Naili, S.; Pelinski, L.; Brocard, J.; Mortreux, A.; Agbossou, F. Tetrahedron: Asymmetry 1998, 9, 193-196.

⁽¹⁰⁾ In going from 1-phenylethanol to the amino alcohols 5, the R,S nomenclature is reversed by the change of atom priority.

⁽¹¹⁾ High-pressure hydrogenation of **2a** with $\operatorname{RuCl_2}[(R)-\operatorname{xylbinap}](\operatorname{dmf})_n$ in methanol (S/C = 500, 50 atm, 25 °C) gave (R)-**3a** in 99% ee but with only 44% conversion after 48 h. No reaction took place at 8 atm. (12) (a) Delaunay, D.; Le Corre, M. J. Chem. Soc., Perkin Trans. 1 **1994**,

 ^{(12) (}a) Delaunay, D.; Le Corre, M. J. Chem. Soc., Perkin Trans. 1 1994, 3041–3042. (b) Matsumura, Y.; Ohishi, T.; Sonoda, C.; Maki, T.; Watanabe, M. Tetrahedron 1997, 53, 4579–4592.

 Table 1.
 Asymmetric Hydrogenation of Amino Ketones Catalyzed

 by Chiral RuCl₂(diphosphine)(1,2-diamine) Complexes^a

Ru			time	product		
ketone	complex	S:C:base ^b	h	structure ^c	% yield ^d	% ee ^e
2a	(<i>R</i> , <i>R</i>)- 1a	2000:1:16	4	(S)- 3a	99 ^f	92 ^g
2b	(<i>R</i> , <i>R</i>)-1a	2000:1:20	16	(S)- 3b	93	81
2c	(R,R)-1a	2000:1:20	12	(<i>R</i>)-3c	90	93
4a	(<i>R</i> , <i>R</i>)-1a	2000:1:20	4	(R) -5 \mathbf{a}^h	87	99
4b	(<i>R</i> , <i>R</i>)-1a	1000:1:20	20	(<i>R</i>)- 5 b	92	95
4c	(<i>R</i> , <i>R</i>)-1a	2000:1:16	8	(<i>R</i>)-5c	96	99.8
4c	(<i>R</i> , <i>R</i>)- 1a	250:1:10	11^{i}	(<i>R</i>)-5c	90	94
4d	(<i>R</i> , <i>R</i>)- 1a	2000:1:20	14 ^j	(R)- 6 ^h	98	99
4e	(<i>R</i> , <i>R</i>)- 1a	2000:1:16	7	(R) -5 e^{h}	94	99
9	(<i>R</i> , <i>R</i>)- 1a	2000:1:40	24	(<i>R</i>)-10	100	97
12	$(S,S)-1a^{k}$	10000:1:10	5	(R)- 13	96 ^f	97.5
15	(<i>S</i> , <i>S</i>)-1a	10000:1:200	32	(<i>R</i>)-16	97	99

^{*a*} Unless otherwise stated, reactions were conducted at 8 atm of H₂ and at 25 °C using a 0.5-1.0 M solution in 2-propanol containing **1a** and *t*-C₄H₉OK. ^{*b*} Substrate:catalyst:*t*-C₄H₉OK molar ratio. ^{*c*} Absolute configurations were determined by the sign of rotation of the amino alcohols or their derivatives. ^{*d*} Isolated yield. ^{*e*} Chiral HPLC analysis. ^{*f*} ¹H-NMR analysis. ^{*s*} ¹H-NMR analysis using a chiral shift reagent. ^{*h*} Absolute configuration was determined by chiral HPLC analysis attract conversion to (*R*)-**5c**. ^{*i*} At 1 atm of H₂. ^{*j*} A 4:1 2-propanol–methanol mixture was used as solvent. ^{*k*} (*S*,*S*)-**1a** was treated with *t*-C₄H₉OK at 60 °C for 30 min before addition of **12**.

asymmetric induction is identical with that observed with the dimethylamino compound **2c**. The ketones with a normally strongly coordinative amido group behave as simple aromatic ketones.

The basic, protic reaction conditions rapidly racemize enantiomers of 2-substituted cyclohexanone **7**, allowing dynamic kinetic resolution of the racemate by hydrogenation.^{8,13} Thus, the reaction of racemic **7** in a 2-propanol solution containing (*R*,*S*)-**1b** and KOH ([**7**] = 0.2 M, ketone:Ru:base = 300:1:200, 8 atm, 25 °C, 5 h) led to 1,2-cis-configurated (*S*,*R*)-**8** in a 98% yield and 82% ee accompanied by 1% of the trans isomer.¹⁴

Asymmetric hydrogenation of the α -benzamido ketone **9** presents a convenient way to prepare (*R*)-denopamine [(*R*)-**11**], a β_1 -receptor agonist to treat congestive heart failure.¹⁵ The reaction using a 1.0 M solution of **9** in 2-propanol containing (*R*,*R*)-**1a** and *t*-C₄H₉OK (S/C = 2000) at 8 atm produced (*R*)-**10** in 97% ee and in 100% yield. Removal of the amide protector from (*R*)-**10** (KOH in aqueous C₂H₅OH, reflux, 10 h)¹⁶ followed by treatment with HCl, recrystallization (100% ee), and selective removal of the *O*-benzyl group by hydrogenolysis on Pd/C (aqueous 2-propanol, 25 °C, 3 h) afforded (*R*)-**11** in a 94% yield.

This method is extended to the asymmetric hydrogenation of β -amino ketones with an S/C of up to 10 000, allowing for a practical synthesis of the antidepressant (*R*)-fluoxetine [(*R*)-14] without the need of any chromatographic techniques.^{17,18} A Ru catalyst was first prepared by mixing (*S*,*S*)-1a (7.3 mg) and *t*-C₄H₉-OK (60 μ L of 1.0 M *t*-C₄H₉OH solution) in 2-propanol (30 mL) at 60 °C for 30 min.¹⁹ Hydrogenation of 3-dimethylaminopropiophenone (12) (10.6 g) using this solution (S/C = 10 000, 8

(16) Kawaguchi, T.; Saito, K.; Matsuki, K.; Iwakuma, T.; Takeda, M. Chem. Pharm. Bull. **1993**, *41*, 639–642.

atm, 25 °C, 5 h) gave (*R*)-**13** in 97.5% ee in a 96% yield. The NaH-aided condensation of the alcohol with 4-ClC₆H₄CF₃ followed by monodemethylation of the dimethylamino group with α -chloroethyl chloroformate²⁰ afforded (*R*)-**14**.

The functionalized γ -amino ketone **15** can be converted directly to BMS 181100 [(*R*)-**16**], a potent antipsychotic agent,^{21,22} without affecting the aromatic fluoride or 2-amino-5-fluoropyrimidine moiety. Hydrogenation using a 0.5 M solution of **15** in 2-propanol containing (*S*,*S*)-**1a** and *t*-C₄H₉OK was accomplished at 8 atm (S/C = 10 000) to give (*R*)-**16** in 99% ee and 97% yield.

The sense of enantioselection observed with various α -, β -, and γ -amino and protected amino ketones supports the operation of a nonchelate hydrogenation mechanism. This asymmetric method is highly flexible with respect to the substrate's structure and functionality. This hydrogenation can be performed under low pressure (<8 atm) at room temperature with a high S/C ratio and in a reasonably high concentration. This method is applicable to the synthesis of a wide range of pharmaceutically important chiral amino alcohols and their derivatives.²³

Acknowledgment. This work was financially supported by grantsin-aid from the Ministry of Education, Science, Sports and Culture of Japan (Nos. 07CE2004 and 11440188).

Supporting Information Available: The procedure for the hydrogenation of amino ketones, GC and HPLC behavior, and $[\alpha]_D$ values of products, as well as the procedures for synthesizing (*R*)-denopamine and (*R*)-fluoxetine (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA001098K

⁽¹³⁾ Ohkuma, T.; Ooka, H.; Yamakawa, M.; Ikariya, T.; Noyori, R. J. Org. Chem. **1996**, *61*, 4872–4873.

⁽¹⁴⁾ Noyori, R.; Tokunaga, M.; Kitamura, M. Bull. Chem. Soc. Jpn. 1995, 68, 36–56 and references therein.

^{(15) (}a) Naito, K.; Nagao, T.; Otsuka, M.; Harigaya, S.; Nakajima, H. Jpn. J. Pharmacol. 1985, 38, 235–241. (b) Yokoyama, H.; Yanagisawa, T.; Taira, N. J. Cardiovasc. Pharmacol. 1988, 12, 323–331. (c) Bristow, M. R.; Hershberger, R. E.; Port, J. D.; Minobe, W.; Rasmussen, R. Mol. Pharmacol. 1989, 35, 295–303 and references therein.

⁽¹⁷⁾ Racemic fluoxetin is an antidepressant agent (selective serotonic reuptake inhibitor) developed by Eli Lilly. Its annual sale in 1997 was \$2.6 billion. This compound is now in a process of recemic switch. See: Rogers, R. S. *Chem. Eng. News* **1998**, *Nov* 30, 11–13.

⁽¹⁸⁾ Robertson, D. W.; Krushinski, J. H.; Fuller, R. W.; Leander, J. D. J. Med. Chem. 1988, 31, 1412–1417 and references therein.

⁽¹⁹⁾ This pretreatment diminishes the induction period and also reduces the amount of strong base in the reaction system, thereby maximizing the efficiency of hydrogenation of the base-sensitive substrate **12**.

⁽²⁰⁾ Deeter, J.; Frazier, J.; Staten, G.; Staszak, M.; Weigel, L. *Tetrahedron Lett.* **1990**, *31*, 7101–7104.

⁽²¹⁾ Yevich, J. P.; New, J. S.; Lobeck, W. G.; Dextraze, P.; Bernstein, E.; Taylor, D. P.; Yocca, F. D.; Eison, M. S.; Temple, D. L., Jr. J. Med. Chem. **1992**, 35, 4516–4525.

⁽²²⁾ For asymmetric reduction of an analogue of **15** with DIP-chloride, see: Ramachandran, P. V.; Gong, B.; Brown, H. C. *Chirality* **1995**, *7*, 103–110.

⁽²³⁾ Other examples include eprozinol (bronchodilator), isoproterenol (β -adrenoreceptor agonist), proventil (racemate, asthma drug), seldane (racemate, antihistamic agent), and tomoxetine (antidepressant).